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In many species, male and female animals differ in the number

of X chromosomes they possess. As a consequence, large

scale differences in gene dosage exist between sexes; a

phenomenon that is rarely tolerated by the organism for

changes in autosome dosage. Several strategies have evolved

independently to balance X-linked gene dosage between

sexes, named dosage compensation (DC). The molecular basis

of DC differs among the three best-studied examples:

mammals, fruit fly and nematodes. In this short review, we

summarize recent microscopic and chromosome conformation

capture data that reveal key features of the compensated X

chromosome and highlight the events leading to the

establishment of a functional, specialized nuclear

compartment, the X domain.
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Introduction
Eukaryotic genomes are accommodated inside the small

nuclear space while staying functional. A century of

microscopic studies have demonstrated that this function-

ality is correlated to some degree to spatial organization of

chromosomes. However these experiments had limited

spatial resolution due to the use of light microscopy and

the small number of loci whose location could be deter-

mined simultaneously. In the last 15 years, the advent of

chromosome conformation capture techniques (C-tech-

niques, Box 1) enabled the generation of genome-wide

probabilistic physical contact maps, allowing investiga-

tion of the spatial organization of the entire genome [1].

One of the main discoveries using C-techniques is

the folding of chromatin into large-scale (100 kb–1 Mb)
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topologically associated domains (TADs, also named

chromosomal interacting domains) in all studied genomes

([2,3] and [4] for review). Sequences inside TADs show

higher contact frequencies among themselves than with

sequences in neighboring TADs (also called insulation).

TADs cluster together inside the nuclear space and

preferential clustering is correlated with the chromatin

state and the transcriptional status of genes located inside

the TADs [2,5]. This is highly reminiscent of previously

described nuclear ‘bodies’ or ‘foci’ of functional domains

such as Polycomb or transcriptional factories [6,7].

Organization of genomes into TADs may contribute to

long range transcriptional regulation. An example of such

long range control is dosage compensation (DC), where

simultaneous regulation of multiple genes on a single

chromosome occurs. The X chromosome provides there-

fore a fascinating model to investigate the formation and

function of a specialized nuclear body and how chromo-

some organization is linked to chromosome-wide gene

regulation. In the three best studied model systems

(mammals, fruit fly and nematodes), the common under-

lying feature of DC is the direct interaction of a dosage

compensation complex (DCC) with the X chromosome.

The DCC binds the X at specific sites from which it

spreads to control transcription. Recent microscopic and

molecular data demonstrate that DCC binding modifies X

chromosome conformation and nuclear positioning of the

X chromosome, which in turn could modulate X-linked

gene expression. Here we review the latest developments

toward understanding the link between nuclear organiza-

tion and dosage compensation in these model organisms.

Mammals: a long non-coding RNA-dependent
silent compartment
In mammals, females randomly inactivate one of two X

chromosomes during early development (X chromosome

inactivation, XCI) and stably maintain this silenced state.

Microscopically, the inactive X chromosome forms a

compact heterochromatic structure, the Barr body while

the active X is indistinguishable from an autosome [8].

XCI is caused by the monoallelic expression of the 17 kb

long non-coding Xist RNA from one of the two X chromo-

somes. The Barr body is coated with Xist, carries high

levels of histone 3 lysine 27 methylation (deposited by

the Polycomb complex 2), high levels of DNA methyl-

ation and is often localized at the nuclear periphery or

close to the nucleolus — two places where autosomal

heterochromatin is clustered (Figure 1A(c)) [9,10]. Super

resolution microscopy revealed that the Barr body is not
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.gde.2015.11.007&domain=pdf
mailto:peter.meister@izb.unibe.ch
http://dx.doi.org/10.1016/j.gde.2015.11.007
http://www.sciencedirect.com/science/journal/0959437X


10 Genome architecture and expression

Box 1 Chromosome conformation capture techniques

Chromosome conformation capture (3C) techniques are based on

the principle that in cross-linked chromatin, restriction fragments far

apart on a chromosome or even on different chromosomes but close

in the nuclear space can be ligated together. Different variations of

3C techniques exist (see below), but the initial steps are the same.

Chromatin is cross-linked with formaldehyde and cut with a

restriction enzyme. Fragments are ligated together, leading to

ligation products consisting of distant fragments of the linear

genome.

One to one and one to many techniques

3C is based on (semi-)quantitative PCR with a pair of primers

hybridizing near the ends of restriction fragments of interest [59].

When repeated for many pairs, this gives a matrix of relative ligation

efficiency for all studied fragments.

The 4C methodology (circularized 3C) is based on the creation of

small DNA circles by another round of restriction digest and ligation

[60]. The target locus (often called viewpoint) is circularized,

capturing a ligated distant fragment. These circles are amplified

using PCR with primers in the viewpoint pointing outwards.

Amplicons are then either hybridized to microarrays or sequenced.

This approach gives a genomic view of all possible contact partners

from one site with the rest of the genome at high resolution.

Many to many technique

The 5C technology (carbon copy 3C) gives an overview of contacts

between multiple sequences [61]. Instead of using a single

oligonucleotide, numerous oligonucleotides corresponding to the

different restriction sites in the genomic region of interest are

hybridized. The 50 end of all these nucleotides carry the same T7/T3

sequence, which is used for PCR amplification. PCR products can

be either hybridized to microarray or sequenced. The result is a

matrix of contact frequencies for many sites.

All to all technique

For Hi-C, restriction ends are labelled using biotin-tagged nucleo-

tides [62–64]. After ligation, purification and shearing, ligated

fragments are pulled-down using biotin and sequenced. A matrix of

contact frequencies between all restriction fragments in the genome

can be constructed. Importantly, one restriction fragment can only

ligate once in a given haploid cell. Therefore, contact maps

constructed using C techniques are probabilistic and represent the

likelihood of two given fragments contacting together.

The resolution of these techniques depends on the size in base pairs

of the recognition sequence of the restriction enzyme used to create

the fragments and the sequencing depth of libraries. Whereas initial

studies achieved only megabase resolution, the latest study with

15 billion contact reads reached kilobase resolution [15].
uniformly compact, but contains several interchromatin

spaces harboring active chromatin [9,11], suggesting a

spatial separation of active segments (escapee genes)

and a core repressive compartment within the inactive

X territory (Figure 1A(a)) [12,13].

In mice, allele specific Hi-C experiments distinguished

the active X from the inactive X, providing molecular

evidence supporting microscopic differences between the

active and the inactive X. The active X is structurally

similar to autosomes and consists of several small TADs

separated by boundary regions enriched for cohesin and

CTCF. In contrast, the inactive X shows a bi-partite
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structure with two large megadomains devoid of cohesin

and CTCF. These large domains include several long

range contacts between active regions that escape silenc-

ing (Figure 1A(b)) [14�,15�,16��]. This bi-partite structure

is a consequence of Xist coating, as ablation of Xist from

the inactive X resulted in both transcriptional reactivation

and acquisition of several TADs separated by cohesion

enriched boundaries, resembling the ones on the active X.

Cohesin repulsion was therefore suggested as a way to

establish the core repressive subcompartment of the

inactive X [16��]. The boundary region between the

two megadomains is the DXZ4 macrosatellite repeat

locus [14�,15�,16��]. Unlike most of the genes on the

inactive X, this locus remains transcriptionally active

and harbors long range contacts with other macrosatellite

regions on the inactive X [15�,17,18]. Moreover, the

DXZ4 appears to anchor the inactive X close to the

nucleolus, suggesting interplay between megadomain

formation, nuclear localization and X chromosome silenc-

ing. Further experiments including Hi-C mapping in cells

lacking DXZ4 locus will provide insights into the func-

tion of the megadomain boundary.

The locus encoding Xist, named X inactivation center

(Xic), encodes many XCI regulators. In mouse, the most

important one is Tsix, an antisense non-coding RNA

suppressing Xist transcription before XCI. If a Tsix homo-

log is present in humans, its function in human XIST
regulation is still debated (for review [19]). The murine

conformational landscape of Xic consists of two TADs

spatially separating Xist and Tsix regulators [2,3]. This

separation is essential for correct regulation of the locus,

as deletion of the boundary between these TADs leads to

transcriptional misregulation of Xic ([3,20], reviewed in

[21]). Once Xist transcription initiates, the RNA spreads

along the X chromosome, targeting gene-rich distant

regions of the chromosome before spreading to gene-poor

regions [22]. Correlation between Hi-C and genome-wide

chromatin mapping of Xist-interacting sites showed that

the primary regions bound by Xist are in close spatial

proximity to the Xist locus [22–24]. This is likely because

these regions are transcriptionally active, as is the Xist
locus, and transcriptionally active regions tend to cluster

inside the nucleus [2,5,22,23]. A notable exception is

highly expressed genes that seem to resist Xist interaction

during the early stages of spreading (such as the Ocrl gene

[23]). They however integrate later into the Xist compart-

ments once the ncRNA has coated most of the X chromo-

some. This selective binding of Xist is only observed during

the establishment of inactivation. In the maintenance

phase, once silencing is robust Xist binds homogenously

along the inactive X [22]. At this stage however, Xist
appears dispensable for the maintenance of silencing [25].

Together, these observations suggests a two-step model

for the establishment and maintenance of the inactive X

compartment: Xist first targets moderately active regions
www.sciencedirect.com
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Figure 1

xx

X

Xi

Xa
X

Active
Inactive

X territory

M
am

m
als

 
 

   
 

Fruit flies 
 

 
 

 

 

 

 
 Nematodes  

 
 

 
 

 
 

xx

(c)

(b)(a) e

f

g

h

k j

i

l

a

b

c

d

Transcriptional
activity

H
3K

27
m

e3
 m

od
ifi

ca
tio

n

   Condensin I
DC  co

at
in

g

M
S

L/roX
 coating/N

up interaction

X
is

t l
nc

R
N

A
 c

oa
tin

g

       Nup interactions 
             

  H4K20me1 m
odific

at
io

n 

H
4K

16 ac m
odification

Current Opinion in Genetics & Development

X chromosome functional organization and nuclear positioning in mammals (humans, mice), Drosophila melanogaster and Caenorhabditis elegans.

(A) In mammals, females inactivate one of the two X chromosomes. The inactive X (Xi) is coated with the long non-coding RNA Xist, compacted

into a dense structure comprising two large contact domains (megadomains) often located at the nuclear periphery or close to the nucleolus. In

contrast, the active X is euchromatic. Inset: (a) Inactive and active regions in the Xi territory are spatially separated, with silent regions clustered

inside the Xi chromosome territory. (b) The active regions on the Xi engage in long-range contacts. (c) Xist coated regions tend to cluster together

forming superdomains and interact with Polycomb to mediate the creation of the silent subcompartment within the Xi. (d) Xist interacts with lamin

A/C and lamin B receptor (LBR), which could position the Xi at the nuclear periphery. (B) In Drosophila, the single X chromosome in males is

coated with the MSL complex which mediates twofold upregulation of X-linked genes. Inset: (e and g) MSL binding sites (High Affinity Sites (HAS)/

Chromatin Entry Sites (CES)) interact and cluster in both sexes, and the overall TAD organization of the X remains largely similar. (f) In males,

transcriptionally unaffected or silent regions of the X chromosome are spatially excluded from the MSL territory. (g) Upon recruitment at HAS/CES,

MSL spreading is restricted to spatially proximal regions. (h) MSL bound regions on the X chromosome are enriched for nucleoporins interactions

and the MSL complex co-purifies with two nuclear pore subunits. (C) In C. elegans, the two X chromosomes in hermaphrodites are bound by the

condensin-like dosage compensation complex (DCC), which leads to overall chromatin compaction. Both X are randomly positioned and undergo

a twofold downregulation. The single X in males is less compact and transcriptionally upregulated. Inset: (i and k) In hermaphrodites, DCC spreads

from its loading sites (recruitment element on X, rex). These rex sites cluster in a DCC dependent manner. (j) No spatial segregation of active/

repressive regions has been reported in C. elegans, while the DCC binds preferentially active genes. (l) The male X chromosome is upregulated,

located at the nuclear periphery and interacts with a nucleoporin. Color codes for all systems: Black — the X territory; color gradient represents

transcriptional activity ranging from red (inactive/silent) to green (upregulated). Blue circles represent region of interest.

www.sciencedirect.com Current Opinion in Genetics & Development 2016, 37:9–16
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located in close proximity to the Xist locus, recruiting

downstream effectors mediating chromatin and DNA

modifications, thus creating a silent core. Xist then pro-

gressively coats the entire chromosome, integrating high-

ly expressed genes into the silent compartment while

escapees stay at the periphery of the inactive X nuclear

domain. Once the initial coating and silencing is

achieved, chromatin and DNA modifications downstream

of Xist can maintain silencing autonomously.

Three independent purification studies of Xist-associated

proteins uncovered a number of interacting factors, some

of which help explain structural and functional aspects of

the inactive X domain (10-200 interactors, depending on

the individual study) [16��,26�,27��]. Xist recruits Spen/

SHARP, a transcriptional repressor that interacts with the

histone deacetylase HDAC3. Deacetylated histones were

proposed to recruit Polycomb complexes directly or via
Polycomb/Xist interaction to mediate H3K27 methyla-

tion. This would ultimately lead to transcriptional silenc-

ing of X-linked genes [26�,27��]. Other factors repeatedly

found associated with Xist are the nuclear matrix proteins

hnRNPU/SP120/SAF-A and SAF-B. hnRNPU is essen-

tial for Xist spreading on the X and setup of the silent

chromatin domain, requiring both the hnRNPU nuclear

matrix interaction domain and Xist RNA binding domain

[28]. The exact function of the nuclear matrix interaction

remains, however, elusive. Finally, another common Xist
interactor was the lamin B receptor (LBR), a nuclear

envelope component, which could potentially mediate

the perinuclear targeting of the inactive X (Figure 1A(d))

[16��,26�,29]. Knockdown of LBR led to desilencing of

genes on the inactive X, even though the Polycomb

complex is present [26�]. Interestingly, such mechanisms

in which sets of proteins mediate silencing and dictate

nuclear localization are a recurrent theme linking nuclear

domain formation and gene expression regulation [30].

Drosophila: a ribonucleoprotein-based active
compartment
In the fruit fly, males (XY) show twofold transcriptional

upregulation of X-linked genes to balance expression

with females (XX). The male X chromosome is often

located close to the nuclear periphery in S2 cultured cells

[31] and harbors high level of histone 4 lysine 16 acetyla-

tion [32]. The Drosophila dosage compensation complex

(DCC) consists of 5 subunits: MSL1, 2 and 3, MOF, an

H4K16 histone acetyl-transferase, and MLE, an RNA/

DNA helicase with ATPase activity. msl2 is expressed

exclusively in males and assembles the DCC. MLE

associates with the rest of the MSL-MOF complex via
two essential but redundant long non-coding X-encoded

RNAs roX1 and roX2 (reviewed in [33]). The fly DCC is

recruited to the X chromosome in males at High Affinity

Sites (HAS) or Chromatin Entry Sites (CES) character-

ized by a 21 bp motif (MSL recognition element or MRE)

including the roX1 and roX2 loci. 150–300 of these sites
Current Opinion in Genetics & Development 2016, 37:9–16 
are present on the X chromosome [34,35]. MSL2 interacts

directly with the MREs, however the number of MRE

sites that effectively recruit the MSL complex via direct

MSL-DNA interaction is not clear [36]. Most MRE sites

seem to recruit DCC via CLAMP (chromatin-linked

adaptor for MSL proteins), a protein expressed in both

sexes and bound to the MREs [37]. Unlike Xist, when one

of the roX RNAs is expressed from an autosome, it

spreads in trans and this leads to MSL complex specifi-

cally coating the X chromosome [38,39��]. An autosomal

roX transgene containing HAS sites is also coated with

MSL, yet the complex cannot spread and is restricted to

active loci located nearby in three dimensions [39��].
Together, this suggests a model in which MSL spreading

results from a combination of targeting by HAS sites and

local spreading from these sites (Figure 1B(g)) [40].

Unlike the mammalian inactive X, the overall TAD

structure of the X chromosome in flies does not differ

between male and female cell lines [39��]. Interestingly,

HAS are preferentially located at TAD boundaries and

different HAS seem to interact independent of MSL

binding. At least for one particular HAS, the chromosomal

contact network is very similar in the presence or absence

of the DCC (Figure 1B(e,g)) [39��]. A similar tridimen-

sional network of interacting HAS was independently

observed by comparing roX2-bound loci and Hi-C data

of mixed-sex embryos [41��]. However, DCC loading led

to increased long-range contacts (between different

TADs along the chromosome), reminiscent of early FISH

studies analyzing distances between HAS sites [42].

These data suggest that DCC takes advantage of spatially

clustered HAS to target the male X chromosome and

upon binding to HAS, further creates a specific 3D

conformation of the entire X chromosome by increasing

long range contacts. DCC-bound sites were scored as

located closer to each other in males than in females,

while DCC targets and unbound sequences (mostly in-

active genes) were equally distant or even located further

away in males than females. Together, these experiments

suggest that similar to Xist, the MSL complex creates a

nuclear domain with active genes clustered internally and

spatially separated from inactive loci located at the edge

or outside of the MSL territory (Figure 1B(f)). In this

model, DCC bound regions form an active subcompart-

ment within the X territory for systematic transcriptional

upregulation.

The nuclear organization of the X chromosome also

appears affected by loading of the DCC. Two subunits

of the nuclear pore basket, NUP153 and Megator/TPR,

co-purify with the MSL complex [31,43]. These subunits

bind autosomal regions, marking transcriptionally active

regions of the genome named Nucleoporin Associated

Domains (NARs) [43]. Knockdown of TPR or Nup153

led to downregulation of X-linked genes and impaired

perinuclear localization of the X chromosome [31,43], but
www.sciencedirect.com
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did not seem to change X chromosome conformation as

measured by FISH [42]. Although the exact function of

these proteins remains unclear and somewhat controver-

sial, interaction with nuclear pores may provide a scaffold

to build a stable active subcompartment. Alternatively, as

NUP153 and Megator are shuttling subunits between the

pore and the nucleoplasm, they might simply facilitate

pore-proximal positioning of the X chromosome, there-

fore indirectly activating transcription (Figure 1B(h)).

Nematodes: sex-specific nuclear
compartments to fine-tune transcription
Another strategy for DC was selected in nematodes: in

hermaphrodites (XX), expression from both X chromo-

somes is downregulated two-fold by DCC, thereby

matching the expression of X0 males [44]. DCC in worms

comprises of a subset of proteins involved in sex-deter-

mination and dosage compensation (SDC-1, SDC-2 and

SDC-3) and another subset exclusively involved in dos-

age compensation (MIX-1, DPY-21, -26, -27, -28 and

DPY-30). Together, these subsets assemble to form a

multiprotein complex that resembles the mitotic/meiotic

condensin complexes and is therefore also referred to as

the condensin IDC. SDC-2 is essential for the loading of

the complex onto X chromosomes and expressed exclu-

sively in hermaphrodites [45]. The DCC is loaded at rex
sites (recruitment element on X) characterized by a 12 bp

MEX motif (Motif Enriched on X) [46]. About 38 of these

sites have been formally characterized as able to recruit

the DCC, although sequence analysis and chromatin

immunoprecipitation experiments predict 200–300 rex
sites on the X chromosome. Once loaded on rex sites,

the DCC spreads in cis, leading to high levels of mono-

methylation of histone H4 lysine 20 and partial eviction of

RNA polymerase II [47–50].

The precise molecular mechanism linking these DCC

loading, chromatin modifications and transcriptional reg-

ulation remains unclear. Early on, the condensin-like

structure of the DCC led to the suggestion that it could

modify higher order chromatin structures to control gene

expression [51]. Recent results show that indeed the

DCC alters both the structural organization and the

nuclear localization of the X chromosome.

Whole chromosome paints and distance measurements

linked DCC binding to a slight increase in overall com-

paction of the X chromosome (Figure 1C) [52��,53]. Hi-C

maps revealed that the TADs on the X chromosome in

hermaphrodites showed higher internal contact frequen-

cies than on autosomes. X chromosome TADs spanned

�1 Mb, separated by boundary regions that are enriched

for rex sites. In addition, a subset of rex sites contacted

each other more frequently compared to non-rex sites

(Figure 1C(i,k)) [52��,54��]. Upon DCC knock-down,

many but not all X TAD boundaries became weaker,

in particular in the middle part of the chromosome [54��].
www.sciencedirect.com 
Correlated with this partial disappearance of TAD bound-

aries, most rex-rex contacts disappeared, suggesting rex
sites cluster in a DCC dependent manner. Although X

chromosome large scale structure is clearly modified by

DCC loading, the functional importance of these changes

in terms of gene regulation remains, however, elusive.

DCC binding to the X chromosome changes its subnu-

clear positioning. In hermaphrodite embryos, the outer

third of all autosomes show high levels of interaction with

the nuclear lamina, while the X chromosome only loosely

interacts with the lamina at subtelomeric regions [55,56].

In contrast, in male embryos probes distributed along the

X chromosome showed preferential perinuclear localiza-

tion (Figure 1C(l)) [52��]. Perinuclear enrichment of the

X chromosome in males appeared to be at least partially

mediated by rex sites. Indeed, a single rex site is able to

autonomously target an autosomal locus toward the nu-

clear periphery in males specifically. However, there

might be additional factors like non-coding RNA genes,

highly enriched on the X chromosomes, some of which

were shown previously to interact with nuclear pores [57].

The male X chromosome interacts broadly with a com-

ponent of the nuclear pore (Figure 1C(l)), similar to

Drosophila [31,43,52��]. The loading of the DCC onto

X chromosomes in hermaphrodites impaired both peri-

nuclear chromosome localization as well as nucleoporin

interaction [52��].

Together, molecular and microscopy data suggest the

presence of two distinct sex-specific compartments in

Caenorhabditis elegans. In males, the X chromosome inter-

acts with nucleoporins, creating an activating compart-

ment able to increase X-linked genes expression. In

hermaphrodites, DCC loading onto X chromatin on the

one hand increases overall chromosome compaction and

TAD structure while on the other hand it impairs activa-

tion at pores by masking the interaction sites and altering

X chromosome position [52��,58]. How these changes

ultimately impact RNA polymerase levels on the X

remains to be elucidated.

Nuclear organization and dosage
compensation: where is the link?
Dosage compensation equates expression between X-

linked and autosomal genes by either up-regulating or

down-regulating X-linked transcription. In the three sys-

tems where DC is mechanistically best understood, DC

undoubtedly leads to changes in the X chromosome large

scale organization, nuclear localization and chromatin

composition. Interestingly, DC always makes use of

chromosomal topology for DCC initial targeting and/or

spreading along the X chromosome before modifying this

organization to stabilize gene expression. Setting up a

specialized compartment for the X chromosome provides

an additional layer of gene regulation, segregating acti-

vating factors (male flies and nematodes) or silencing
Current Opinion in Genetics & Development 2016, 37:9–16
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complexes (mammals and nematodes) from the rest of

the genome in a self-reinforcing compartment. Under-

standing which factors setup the different X domains and

stabilize these over the course of development will shed

light on the importance of nuclear organization for X

chromosome transcriptional regulation, providing useful

paradigms for the plethora of other nuclear compart-

ments.
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