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The nuclear envelope — a scaffold for silencing?
Benjamin D Towbin, Peter Meister and Susan M Gasser
An increasing number of studies indicate that chromosomes

are spatially organized in the interphase nucleus and that some

genes tend to occupy characteristic zones of the nuclear

volume. FISH studies in mammalian cells suggest a differential

localization of active and inactive loci, with inactive

heterochromatin being largely perinuclear. Recent genome-

wide mapping techniques confirm that the nuclear lamina,

which lies beneath the nuclear envelope, interacts preferentially

with silent genes. To address the functional significance of

spatial compartmentation, gain-of-function assays in which

chromatin is targeted to the nuclear periphery have now been

carried out. Such experiments yielded coherent models in

yeast; however, conflicting results in mammalian cells leave it

unclear whether these concepts apply to higher organisms.

Nevertheless, the recent discovery that evolutionarily

conserved inner nuclear membrane proteins support the

peripheral anchoring of yeast heterochromatin suggests that

certain principles of nuclear organization may hold true from

yeast to man.
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Introduction
The cell nucleus contains the essential genetic infor-

mation of an organism and is responsible for the expres-

sion, duplication, and repair of this precious material. Its

structure is defined by a double lipid bilayer studded with

nuclear pores, which allow macromolecular trafficking in

and out of the nuclear compartment. The outer bilayer of

the nuclear envelope (NE) closely resembles the endo-

plasmic reticulum, while the inner nuclear membrane

(INM) is specialized to meet the unique nuclear struc-

tural and functional needs [1]. In higher eukaryotes, the

spherical shape of the nucleus is maintained by a dense

network of specialized intermediate filaments, the
Current Opinion in Genetics & Development 2009, 18:180–186
nuclear lamins. Lamins extend from pore to pore, provid-

ing rigidity and a platform for the binding of a large

number of lamin-associated proteins and specific genomic

domains. A small fraction of lamins are found at internal

sites in the nucleus, where again they are thought to

organize genomic function [2]. Plants and lower, single-

celled organisms do not have nuclear lamins, although

other structural proteins of the INM are conserved both in

primary structure and in function. In particular, the

nuclear pore complex, an elaborate machine for macro-

molecular transport, harbors many highly conserved

proteins [3].

Given this structural conservation it is to be expected that

the functions of the NE are also conserved. Indeed, it has

long been recognized that dense-staining, transcription-

ally silent heterochromatin tends to lie next to the NE or

surround the nucleolus, and is specifically excluded from

nuclear pores. This has been demonstrated for the repeti-

tive noncoding sequences of vertebrates, and also for

silent telomeric chromatin in yeast [4].

Recently, genome-wide techniques have allowed the

exploration of sequences and proteins involved in this

organization of heterochromatin in higher eukaryotes

[5��,6��] as well as in yeast [7]. A number of important

questions have emerged from these studies: Does periph-

eral localization reflect a passive exclusion of heterochro-

matin from active zones, or do proteins that bind or

nucleate heterochromatin have functional anchorage sites

at the nuclear periphery? Do all types of silent chromatin

bind the NE? Does positioning contribute actively to

either heterochromatin establishment or maintenance?

Recent reports showing that highly transcribed genes are

actively recruited to nuclear pores [7–11] further compli-

cate the picture. How are active and inactive domains kept

apart in the nucleus? Nuclear pore attachment has been

implicated in providing a boundary function to limit the

spread of heterochromatin [12]. This imposes a further

question: is localization essential for boundary function or

does pore association occur by default?

Correlative evidence has long been used to argue that

subnuclear repositioning of genes influences their tran-

scriptional activity. However, such studies cannot directly

prove the functional relevance of nuclear architecture. To

demonstrate that functional read-outs stem from structural

changes one must both perturb nuclear architecture geneti-

cally and evaluate gain-of-function assays, for example by

tethering chromatin to the nuclear periphery. Such spatial

targeting of chromatin was first applied in budding yeast a

decade ago [13] and has recently been adapted to exper-

iments in cultured mammalian cells [14��,15��,16��]. Here,
www.sciencedirect.com
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we review these recent experiments and discuss them in

view of genetic studies of the nuclear periphery in yeast.

Gene organization along the chromosome
arm: functional domains
Chromatin is a contiguous fiber of compact structure and

limited flexibility [17]. Therefore, the relocation of a

locus to a specific nuclear compartment will inevitably

influence the subnuclear position of neighboring genes,

encompassing several megabases in mammalian cells

[15��]. Consequently, if subnuclear position plays a role

in gene regulation, there may be evolutionary pressure

toward a linear grouping of coregulated genes along the

chromosome arm. A classic example is the linear align-

ment of the mammalian HOX genes, which are arranged

in the order of their spatio-temporal activation during

limb development [18]. Recent genome-wide analyses

indicate that highly transcribed genes are frequently

found in clusters [19,20] and that tissue-specific genes

are also grouped along the chromosome in higher eukar-

yotes [21–24]. In Drosophila, a computational analysis of

30 occupancy maps extended this observation to chro-

matin-associated proteins and histone modifications. This

study showed that at least 50% of all fly genes are

organized in chromosomal domains in which genes bear

a similar epigenetic status. Interestingly, the enrichment

of common functional annotation keywords (Gene Ontol-

ogy terms) associated with genes organized in this manner

further supported the idea that genes with a common

function are grouped into chromosomal units [25�].

Genome-wide studies on nuclear organization
Datasets obtained from microscopic analysis of gene

position will never be sufficiently large to test generally

whether the transcriptional activity of chromosomal

domains correlates with their subnuclear position. How-

ever, genome-wide tagging methods such as DamID [26–
28] have been used as an alternative method to determine

the molecular association of genes with the nuclear

lamina. In brief, lamin is expressed as a fusion to the

E. coli dam methylase, which exclusively methylates

adenines. DNA fragments located close to the nuclear

lamina are then amplified by a methylation-specific PCR

protocol and identified by hybridization to microarrays.

This method was recently used to map genomic inter-

actions with B-type lamins in Drosophila Kc cells [5��] and

human fibroblasts [6��].

In Drosophila cells, as well as human fibroblasts, tran-

scriptionally silent genes were found strongly enriched in

the lamin-associated fraction. These lamin-bound genes

clustered in domains of approximately 500 kb, in agree-

ment with the domain-based model for genome archi-

tecture. These domains were depleted for active

chromatin marks, were typically flanked by binding sites

of the insulator protein CTCF and by CpG islands [6��],
and frequently contained coregulated genes [5��].
www.sciencedirect.com
These studies have shown that the association of silent

genes with the nuclear periphery is true not only for the

handful of genes analyzed by microscopic approaches, but

is valid genome-wide. Key questions remaining are what

function heterochromatic clustering at the periphery

might serve, and which factors determine the peripheral

association of silent genes. Studies done with yeast

indicate that the structural proteins that form heterochro-

matin themselves anchor silent loci to the periphery.

Indeed, a silenced gene can attach to the periphery even

when excised from its genomic context [29]. However,

one should not conclude from this that peripheral associ-

ation is merely a consequence of repression without any

functional impact. It is conceivable that the clustering of

heterochromatin at the nuclear periphery stabilizes the

silent state or helps ensure its epigenetic propagation, for

instance by influencing chromatin assembly after replica-

tion [30]. The best way to experimentally assess the

function of nuclear organization is to modify a gene’s

subnuclear position. Below, we summarize results

obtained using such approaches.

Lessons from genetic manipulation of yeast
and flies
Early evidence for a regulatory role of nuclear organiz-

ation stems from the study of a Drosophila translocation

mutant allele (bwD), which contains a block of hetero-

chromatic sequence inserted at the brown locus. The

mutation causes brown to associate with centromeric

heterochromatin [31,32]. In animals heterozygous for

bwD, the wild-type allele also associated in trans with

centromeric heterochromatin owing to the somatic pair-

ing of homologous Drosophila chromosomes. Coincident

with this association, the wild-type brown locus was

silenced in a variegated manner. Similarly, silent mat-

ing-type loci (HML and HMR) associate in trans with

telomeric repeats in yeast [33].

The influence of gene position on the silent mating-type

locus HMR was assessed more directly in S. cerevisiae
about 10 years ago [13]. Repression of this locus can be

alleviated by the partial disruption of a cis-acting silencer

element (Figure 1(a)b). However, silencing is restored

when HMR is artificially recruited to the NE by the

expression of a recombinant protein that specifically

binds a sequence motif inserted next to HMR
(Figure 1(a)d). The proposed mechanism for this facili-

tated silencing was that the perinuclear tethering posi-

tioned HMR near telomeric foci that sequester the

silencing factors (SIR factors) [34]. In support of this

concept, it was recently shown that peripheral tethering

is unable to restore silencing in a genetic background in

which SIR factors are dispersed from foci [35�]. However,

placing a gene near SIR foci is not sufficient to cause gene

repression, as the HMR locus lacking silencer elements is

still expressed when recruited to the NE (Figure 1(a)e)
Current Opinion in Genetics & Development 2009, 18:180–186
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Figure 1
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Artificial tethering of chromatin at the nuclear periphery in yeast and mammalian cells. (a) Transcription of tethered loci at the nuclear envelope in budding

yeast. a. The wild-type silent mating-type locus HMR, encoding the mating pheromone is naturally silenced in yeast. The gene is flanked by two silencers,

E and I, which target the locus to the nuclear periphery. b. Partial disruption of the E silencer leads to gene expression and delocalization of the locus away

from the nuclear envelope. c. Targeting of the locus is achieved by the insertion of binding sites for a DNA binding domain (DBD). Binding of the DBD alone

has no effect on gene expression and subnuclear localization. d. Targeting of the DBD (light blue) fused to an inner nuclear membrane protein (dark blue)

leads to the relocation of HMR to the nuclear envelope. Relocation of a crippled silencer to the nuclear rim can restore silencing. e. This displacement has

no effect if the E silencer is entirely removed. This shows the need for cis-acting factors for nucleation of silencing. (b) Tethering systems used to target

chromatin to the nuclear lamina in mammalian cells. a. The system set up by Kumaran and Spector allows one to follow in real time and in live cells

inducible transcription and translation of a gene using fluorescent reporters. The locus can be targeted using a fusion between a lac repressor and

laminB1. The authors show that the induction rate is similar whether the construct is tethered to the lamina or not. However, tethering decreases the

efficiency of induction, since only 70% of the genes can be activated, compared to 90% in the untethered condition. b. A fusion protein between lacI and

the lamin associated protein LAP2b is used by Finlan et al. to monitor the effects of peripheral tethering. Expression of a transgenic reporter (blasticidin) is

decreased by 20–30%. Transcription of most flanking genes is unaffected, except for three genes which show significantly reduced mRNA levels. c. Reddy

et al. use a fusion protein with another lamin binding protein, Emerin. A truncated form of Emerin is used that has no transcriptional modulatory function.

Tethering a reporter gene (Hyg) at the nuclear lamina decreases the transcription level significantly.
[13]. Thus, anchorage near SIR pools at the nuclear

envelope facilitates, but is not sufficient for repression.

The influence of peripheral attachment on
gene transcription in mammalian cells
Three laboratories have recently adapted such peri-

nuclear targeting experiments to mammalian cell culture

systems (Figure 1(b)) [14��,15��,16��]. All three studies

made use of cell lines carrying stable genomic integ-

rations of tandem repeats of lac operator (lacO) sites.

Through expression of the lacO-binding lacI protein

fused directly to Lamin B1 or to the lamin-associated

INM proteins Emerin and Lap2b, the lacO arrays and

adjacent genes could be tethered to the NE.
Current Opinion in Genetics & Development 2009, 18:180–186
The laboratory of David Spector compared the activation

dynamics of a doxycyclin-inducible transgene that encodes

a fluorescently marked RNA, in the presence or absence of

tethering by a LaminB1–lacI fusion (Figure 1(b)a) [14��].
Careful quantification of fluorescence intensity did not

reveal any effect of peripheral location on the kinetics of

mRNA accumulation in individual cells. However, the

fraction of cells in which the transgene could be activated

at all was reduced from 90% to 70%.

Similarly, the Bickmore laboratory observed that periph-

eral tethering using a lacI–Lap2b fusion led to a reduction

in the fraction of cells in which a lacO-tagged transgene

showed an RNA-FISH signal, and the corresponding
www.sciencedirect.com
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mRNA levels were decreased by 20–30% (Figure 1(b)b)

[15��]. More importantly, the expression of most

endogenous genes in the neighborhood of the lacO array

remained unchanged upon tethering, with the exception

of three genes located within 5 Mb of the lacO array

whose mRNA levels dropped between 35% and 50%.

The Singh laboratory found that two genes located next

to lacO repeats had reduced expression levels when the

locus was recruited to the periphery by an Emerin–lacI

fusion (Figure 1(b)c) [16��]. Again, the majority of the

neighboring genes were unaffected. In contrast to the two

other studies, however, the expression of a transgenic

reporter located next to the lacO array was robustly

reduced by 75%.

In summary, all three studies show that, as in yeast

[13,36,37], attachment to the nuclear periphery does

not generally preclude transcriptional activity. Nonethe-

less, the expression of at least some genes is influenced by

peripheral tethering. It is likely that the fraction of

affected genes is underestimated because of experimen-

tal noise that can obscure small expression changes of

tethered genes. Moreover, in all cases in which endogen-

ous gene activity was measured, only one of the two

homologs was lacO-tagged. Consequently, even com-

plete silencing of a tethered locus would generate only

a 50% reduction in expression. Furthermore, the changes

in activity may be masked by upregulation of the non-

targeted allele through regulatory feedback loops.

It remains to be explored why only a subset of the reporter

genes is affected by peripheral attachment. We note that a

different peripheral anchor was used in each study, and it

is possible that the anchor itself contributes to silencing

[14��,15��,16��]. Different anchoring proteins or pathways

may function to create distinct microdomains with various

levels of transcriptional repression (Figure 2(b)).

Inherent promoter strength could also account for the

differential effects of peripheral attachment. For

instance, it is well established in yeast that strong pro-

moters block the spread of heterochromatin [38,39]. Sim-

ilarly, in human cells, active promoters were often found

at the edge of lamin-associated chromosomal domains

[6��], and in flies it was shown that not all genes respond

equally to association with heterochromatic domains [40].

Thus, there is likely to be a complex relationship between

gene promoter strength and the effects of tissue-specific

factors that influence whether a gene’s spatial position

affects its expression.

What mechanism confers repression on tethered genes? A

simple explanation would be that silencing is not induced

by subnuclear relocation, but by the recruitment of tran-

scriptional repressors that are known to bind the INM

proteins used for tethering [41]. However, this model was
www.sciencedirect.com
ruled out for Emerin, since the targeting of an Emerin–
lacI construct lacking its transmembrane domain failed to

induce gene silencing [16��]. Alternatively, gene repres-

sion may be stabilized at the nuclear lamina by interaction

with other heterochromatic domains in trans. In such a

model, the NE could serve as a platform for efficient

chromatin packing, and its silencing properties would

depend on heterochromatin itself.

Finally, a combination of these two models is possible:

Lap2b has been shown to directly interact with a histone-

deacetylase (HDAC) [42], and inhibition of HDAC

activity by Trichostatin A (TSA) was able to relieve

Lap2b tethering-induced repression [15��]. In this exper-

iment the tethered locus remained attached at the per-

iphery, whereas in Drosophila Kc cells naturally occurring

heterochromatic domains were released from the nuclear

periphery by the treatment with TSA [5��]. Together

these studies suggest a model in which peripheral local-

ization facilitates silencing owing to a peripherally

sequestered HDAC activity. At the same time, deacety-

lated histones themselves may serve as a signal to anchor

chromatin at the NE.

This model is reminiscent of the mechanism suggested

for telomere silencing in yeast. In brief, yeast telomeres

are maintained at the nuclear periphery by two partially

redundant pathways that depend on the DNA-end bind-

ing heterodimer Ku70/Ku80, and a structural component

of yeast silent chromatin — the silent information regu-

lator Sir4 [43]. In the so-called ‘Circe Effect’, the nuclear

periphery facilitates gene repression by clustering telo-

meric repeats, which in turn sequester and accumulate

the factors required for silencing, including the histone

deacetylase Sir2 [30]. Silencing and tethering are thus

interdependent: repression promotes attachment, and

attachment favors repression as long as telomeric tethers

are in place [35�,44].

The yeast nuclear envelope: conserved
functions in the absence of lamins
Although an understanding of silencing at the nuclear

periphery in yeast is conceptually informative, the

mechanistic relevance for mammalian systems has been

debated since yeast lack nuclear lamins. Challenging this

view, members of evolutionary conserved SUN-domain

and LEM-domain INM-protein families have recently

been described to play a role in heterochromatin localiz-

ation and genome stability in budding yeast (Figure 2(a))

[45�,46�,47��].

Members of the SUN-domain family are transmembrane

proteins that span the INM and which are anchored in

place by binding lamins or other factors. The C-terminal

SUN domain of these proteins interacts with Nesprins in

the intermembrane space, which forms a link to the

cytoplasm through the outer nuclear membrane
Current Opinion in Genetics & Development 2009, 18:180–186
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Figure 2
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SUN and LEM domains proteins organize chromatin at the nuclear periphery in both yeast and mammalian cell nuclei. (a) In budding yeast nuclei,

where nuclear lamins are absent, telomeres are clustered together at the nuclear periphery (green domains). This depends on Esc1 and the INM SUN-

domain protein, Mps3. The nucleolus (red domain) is maintained close to the nuclear envelope by Src1, a LEM-domain family protein. For both

proteins, however, no direct interaction with chromatin has been shown to date. (b) In mammalian cell nuclei, LEM-domain and SUN-domain

containing proteins interact with nuclear lamins and probably indirectly with chromatin (for review, see [50]). LEM-domain proteins may create

microdomains at the nuclear periphery. These microdomains may vary in their silencing efficiency which would explain the differences

between the three tethering experiments presented in the text. More experiments will have to be carried out using different targeting constructs

for tethering of the same reporter to resolve whether anchor specificity or reporter dependent characteristics, such as promoter strength, lead to

the variable results.
(ONM), while the N-terminus reaches into the nucleo-

plasm [48]. Bupp and coworkers have recently shown that

even in yeast, where no lamin is present, the SUN-

domain protein Mps3 is involved in silent telomere

anchoring. The N-terminal domain of Mps3 interacts

with Sir4 by pull-down and yeast-two-hybrid exper-

iments, although it is unclear whether this interaction

is direct. Via an adjacent domain, called the PAD domain,

Sir4 also interacts with the NE protein Esc1 [34]. None-

theless, in an mps3 mutant lacking the N-terminal

domain, telomeres are partially detached from the per-

iphery, weakly compromising telomeric repression [45�].

Similarly, a role in gene regulation has been shown for a

yeast LEM-domain protein by Grund and coworkers.

The three types of LEM-domain proteins present in

mammalian cells are sequestered at the INM by nuclear

lamins. Two of these, Lap2b and Emerin, have an effect

on gene expression when tethered to a locus (see above).

The yeast protein Src1 (also called Heh1 [47��]) shares

homology with the third mammalian LEM protein Man1.

Src1 is found at subtelomeric regions, the silent mating-

type loci, and the heterochromatin-like rDNA. Gene

deletion of src1 does not affect telomere localization or

silencing, although a group of subtelomeric genes is

misregulated. This again suggests a role for NE associ-

ation in gene regulation [46�]. Derepression of subtelo-
Current Opinion in Genetics & Development 2009, 18:180–186
meric genes was also shown to result from telomere

delocalization [35�].

Independently, the group of Danesh Moazed reported a

function of Src1 at the tandemly repeated yeast rDNA

locus [47��]. The deletion of src1 causes decondensation

of the rDNA and partial release of the nucleolus from the

nuclear periphery. This release does not affect the silen-

cing of a PolII-transcribed reporter within the rDNA

array, which is maintained by the Sir2 HDAC. Instead,

the rDNA showed increased recombination rates and

changes in array size [47��]. This finding supports another

model whereby the sequestration at the nuclear periphery

plays a role in the regulation of DNA repair and genomic

stability [49�], rather than gene repression. It is not clear

whether these two phenomena are linked.

Conclusions
Recent advances have shown that clusters of silent genes

associate with the nuclear lamina in mammalian cells

[6��]. It is likely that the peripheral localization of hetero-

chromatin is both a cause and a consequence of its

repressed state. Careful analysis in mammalian cells using

identical reporter systems with a range of peripheral

anchors is needed to resolve the conflicts among current

results. Nonetheless, these important studies show that,

as demonstrated in budding yeast, the positioning of
www.sciencedirect.com
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chromatin at the nuclear periphery can affect gene

expression. On the other hand, new studies in yeast reveal

another type of perinuclear anchoring that helps to

stabilize the genome, rather than conferring transcrip-

tional repression. Whether this also parallels events in

higher eukaryotic cells remains to be seen.
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